Clustering Marketing Data Using Nonparametric Bayesian Methods - Marketing Analytics Summit

Clustering Marketing Data Using Nonparametric Bayesian Methods


Wednesday, June 3, 2020


1:30 pm


Which customers are predicted to spend the most in the next year? Which should I select for retargeting? How often should different customers hear from my brand? Answering these requires segmenting customers but instead of applying ad hoc rules, clustering algorithms can reveal the hidden structure in data to group them on their similarity. Dirichlet Process Mixture Modeling (DPMM) is a nonparametric Bayesian method that also infers the optimal number of clusters. Raghav gives a high-level tour of Bayesian methods and DPMM followed by results on customer transaction data. Walk away with a better understanding of nonparametric Bayesian modeling and a greater appreciation for how flexible modeling with these approaches can help uncover the hidden structure in marketing datasets.

Ready to attend?

Register now! Join your peers.

Register nowView Agenda
Knowledge is everything! Sign up for our newsletter to receive:
  • 10% off your ticket!
  • insights, interviews, tips, news, and much more about Marketing Analytics Summit
  • price break reminders